Hacker Newsnew | past | comments | ask | show | jobs | submitlogin

>writing those proofs is both very difficult (requiring PhD-level training) and very laborious.

>For example, as of 2009, the formally verified seL4 microkernel consisted of 8,700 lines of C code, but proving it correct required 20 person-years and 200,000 lines of Isabelle code – or 23 lines of proof and half a person-day for every single line of implementation. Moreover, there are maybe a few hundred people in the world (wild guess) who know how to write such proofs, since it requires a lot of arcane knowledge about the proof system.

I think this type of pattern (genuine difficult problem domain with very small number of experts) is the future of AI not AGI. For examples formal verification like this article and similarly automated ECG interpretation can be the AI killer applications, and the former is I'm currently working on.

For most of the countries in the world, only several hundreds to several thousands registered cardiologist per country, making the ratio about 1:100,000 cardiologist to population ratio.

People expecting cardiologist to go through their ECG readings but reading ECG is very cumbersome. Let's say you have 5 minutes ECG signals for the minimum requirement for AFib detection as per guideline. The standard ECG is 12-lead resulting in 12 x 5 x 60 = 3600 beats even for the minimum 5 minutes durations requirements (assuming 1 minute ECG equals to 60 beats).

Then of course we have Holter ECG with typical 24-hour readings that increase the duration considerably and that's why almost all Holter reading now is automated. But current ECG automated detection has very low accuracy because their accuracy of their detection methods (statistics/AI/ML) are bounded by the beat detection algorithm for example the venerable Pan-Tompkins for the limited fiducial time-domain approach [1].

The cardiologist will rather spent their time for more interesting activities like teaching future cardiologists, performing expensive procedures like ICD or pacemaker, or having their once in a blue moon holidays instead of reading monotonous patients' ECGs.

This is why ECG reading automation with AI/ML is necessary to complement the cardiologist but the trick is to increase the sensitivity part of the accuracy to very high value preferably 100% and we achieved this accuracy for both major heart anomalies namely arrhythmia (irregular heart beats) and ischemia (heart not regulating blood flow properly) by going with non-fiducial detection approach or beyond time domain with the help of statistics/ML/AI. Thus the missing of potential patients (false negative) is minimized for the expert and cardiologist in the loop exercise.

[1] Pan–Tompkins algorithm:

https://en.wikipedia.org/wiki/Pan%E2%80%93Tompkins_algorithm





Guidelines | FAQ | Lists | API | Security | Legal | Apply to YC | Contact

Search: